Peano Axioms help learn recursion in programming

When learning a computer programming language, there are often chances to write recursive functions. Learning the Peano Axioms makes this easier.

This can help learn the classic text Structure and Interpretation of Computer Programs by

Hal Abelson and Sussman and Sussman.

This text was used at MIT 6.001 intro computer programming course from approximately 1983 to 2006. Then they switched to Python. Sussman did a video saying the reason was all the new packages being created for Python for download.

The book uses Scheme which was invented at MIT by Sussman and Guy Steele.

This link criticizes the MIT choice to switch out of Scheme and thus Lisp as the foundation of its undergrad Computer Science program. MIT is no longer MIT. For decades, MIT was the home of Lisp and this dominated software language development in the United States. Now it is turning into another Python Java coding school for industry. Not very MIT at all.

Here at New Math Done Right, we support languages like Lisp and Scheme which are based on fundamental mathematical logic like recursion. If you want to learn these languages and ways of thinking, learning the Peano Axioms and recursive logic will greatly help.


About New Math Done Right

Author of Pre-Algebra New Math Done Right Peano Axioms. A below college level self study book on the Peano Axioms and proofs of the associative and commutative laws of addition. President of Mathematical Finance Company. Provides economic scenario generators to financial institutions.
This entry was posted in Computer Programming, Lisp, Scheme, Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s